棋牌游戏-麻将棋牌室的规章制度_百家乐扑克牌手机壳_凤凰全讯网官方网址 (中国)·官方网站

當(dāng)前位置: > 學(xué)術(shù)報(bào)告 > 理科 > 正文

理科

Reachability in Fuzzy Game Graphs

發(fā)布時(shí)間:2021-09-15 瀏覽:


報(bào)告題目:Reachability in Fuzzy Game Graphs

報(bào)告人: 潘海玉

講座日期:2021-9-17

講座時(shí)間15:00

報(bào)告地點(diǎn):騰訊會(huì)議ID121181901

主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院

講座人簡(jiǎn)介 潘海玉,桂林電子科技大學(xué)副教授,碩士生導(dǎo)師。2009年畢業(yè)于浙江理工大學(xué),獲得工學(xué)碩士學(xué)位;2012畢業(yè)于華東師范大學(xué),獲得博士學(xué)位;2013-2017年在陜西師范大學(xué)博士后流動(dòng)站工作。 現(xiàn)任中國(guó)計(jì)算機(jī)學(xué)會(huì)理論計(jì)算機(jī)專委會(huì)執(zhí)行委員、中國(guó)計(jì)算機(jī)學(xué)會(huì)形式化方法專委會(huì)執(zhí)行委員、中國(guó)人工智能學(xué)會(huì)離散智能計(jì)算專委會(huì)委員、中國(guó)邏輯學(xué)會(huì)非經(jīng)典邏輯與計(jì)算專委會(huì)委員和中國(guó)系統(tǒng)工程學(xué)會(huì)模糊數(shù)學(xué)與模糊系統(tǒng)專委會(huì)委員。研究方向?yàn)樾问交椒ā⒛:壿嫛X?fù)責(zé)主持國(guó)家自然科學(xué)基金面上項(xiàng)目、國(guó)家自然科學(xué)基金地區(qū)項(xiàng)目、中國(guó)博士后基金、廣西自然科學(xué)基金面上項(xiàng)目、廣西可信軟件重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金。以第一作者身份在IEEE Transactions on Fuzzy SystemsFuzzy Sets and SystemsInternational Journal of Approximate ReasoningTheoretical Computer ScienceFundamenta Informaticae等國(guó)內(nèi)外重要學(xué)術(shù)刊物和國(guó)際會(huì)議發(fā)表論文20余篇,其中中國(guó)計(jì)算機(jī)學(xué)會(huì)推薦國(guó)際學(xué)術(shù)刊物上發(fā)表文章9篇。

講座簡(jiǎn)介

Two-player turn-based games on graphs (or game graphs for short) and their probabilistic versions have received increasing attention in computer science, especially in the formal verification of reactive systems. However, in the fuzzy setting game graphs are yet to be addressed, although some practical applications, such as modeling fuzzy systems that interact with their environments, appeal to such models. To fill the gap, in this report we propose a fuzzy version of game graphs and focus on the fuzzy game graphs with reachability objectives, which we will refer to as fuzzy reachability games (FRGs). In an FRG, the goal of one player is to maximize her truth value of reaching a given target set, while the other player aims at the opposite. In this framework, we show that FRGs are determined in the sense that for every state, both of the two players have the same value, and there exist optimal memoryless strategies for both players. Moreover, we design algorithms, which achieve polynomial time-complexity in the size of the FRG, to compute the values of all states and the optimal memoryless strategies for the players. In addition, several examples are given to illustrate our motivation and the theoretical development.


 

环球百家乐的玩法技巧和规则| 永利博百家乐的玩法技巧和规则| 百家乐官网看澳门| 赌场百家乐破解| 百家乐官网规则好学吗| 百家乐官网微笑心法搜索| 百家乐娱乐分析软件v4.0| 亲朋棋牌捕鱼辅助| 百家乐投注网中国| 百家乐官网赢钱公式冯耕| 百家乐官网庄闲和的倍数| 六合彩曾道人| 百家乐真人游戏棋牌| 真人百家乐官网赌场娱乐网规则| 威尼斯人娱乐城 色情| 百家乐官网77scs| 永利高百家乐官网会员| 大发888二十一点| 澳门赌场| 疯狂百家乐游戏| 德州扑克发牌视频| 百家乐怎么稳赢| 百家乐官网首选| 百家乐官网免费试玩游戏| 百家乐棋牌交| 百家乐官网模拟游戏下载| 皇冠百家乐在线游戏| 百家乐如何睇路| 金鼎百家乐官网局部算牌法| 老虎机游戏在线玩| 顶尖百家乐的玩法技巧和规则| 皇冠国际现金网| 东方太阳城二期| 百家乐如何买大小| 环球百家乐官网娱乐城| 百家乐官网网上赌局| 百家乐官网视频游戏聊天| 百家乐赌场国际| 博彩百家乐官网心得| 百家乐官网全讯网娱乐城 | 百家乐程序软件|