棋牌游戏-麻将棋牌室的规章制度_百家乐扑克牌手机壳_凤凰全讯网官方网址 (中国)·官方网站

當前位置: > 學術報告 > 理科 > 正文

理科

計算機科學學院七十周年校慶系列學術報告--On Redundant Topological Constraints

發(fā)布時間:2014-10-09 瀏覽:

講座題目:計算機科學學院七十周年校慶系列學術報告--On Redundant Topological Constraints

講座人:李三江 教授

講座時間:15:00

講座日期:2014-9-30

地點:長安校區(qū) 計算機科學學院學術報告廳

主辦單位:計算機科學學院

講座內容:The Region Connection Calculus (RCC) isa well-known calculus for representing part-whole and topological relations. Itplays an important role in qualitative spatial reasoning, geographical information science, and ontology. The computational complexity of reasoning with RCC has been investigated in depth in the literature. Most of these works focus on the consistency of RCC constraint networks. In this talk, we considerthe important problem of redundant RCC constraints. For a set N of RCC constraints, we say a constraint (x R y) in N is redundant if it can be entailed by the rest of N, i.e., removing (x R y) from N will not change the solution set of N. A prime subnetwork of N is a subset of N which contains no redundant constraints but has the same solution set as N. It is natural to ask how to compute such a prime subnetwork, and when it is unique. In this talk, we show that this problem is in general intractable, but becomes tractable if N isover a tractable subclass S of RCC. If S is a tractable subclass in which weak composition distributes over non-empty intersections, then we can further show that N has a unique prime subnetwork, which is obtained by removing all redundant constraints simultaneously from N. As a byproduct, we identifya sufficient condition for a path-consistent network being minimal.

豪华百家乐桌子| 澳门玩百家乐官网00| 百家乐官网彩金| 免佣百家乐规则| 大发888网址是多少| 总统线上娱乐城| 百家乐官网网上真钱赌场娱乐网规则 | 真人百家乐是啥游戏| 伯爵百家乐官网娱乐城| 百家乐官网哪家赌安全| 香港百家乐六合彩| 佛坪县| 小孟百家乐官网的玩法技巧和规则| 电玩百家乐的玩法技巧和规则| 百家乐官网筹码素材| 百家乐真人大头贴| 大发888游戏平台hg dafa 888 gw 大发888游戏平台dafa 888 gw | 澳门百家乐死局| 3d棋牌游戏| 新彩百家乐官网的玩法技巧和规则| 威尼斯人娱乐场55556| 百家乐官网的代理办法| 网上百家乐官网骗局| 优惠搏百家乐的玩法技巧和规则| 凯旋门百家乐官网技巧| 百家乐奥| 网上百家乐官网有没有假| 网上百家乐娱乐平台| 百家乐官网的打法技巧| 伯爵百家乐娱乐场| 嘉善县| 玩百家乐官网输澳门百家乐官网现场| 青川县| 永利高百家乐信誉| 蚌埠市| 百家乐分析博彩正网| 永安市| 百家乐java| 百家乐官网筹码桌布| 百家乐技巧看| 百家乐官网娱乐网佣金|