棋牌游戏-麻将棋牌室的规章制度_百家乐扑克牌手机壳_凤凰全讯网官方网址 (中国)·官方网站

當(dāng)前位置: > 學(xué)術(shù)報(bào)告 > 理科 > 正文

理科

孤子方程和黎曼希爾伯特方法

發(fā)布時(shí)間:2015-06-23 瀏覽:

講座題目:孤子方程和黎曼希爾伯特方法

講座人:Spyridon Kamvissis 教授

講座時(shí)間:09:30

講座日期:2015-6-23

地點(diǎn):長(zhǎng)安校區(qū) 文津樓三段612室

主辦單位:計(jì)算機(jī)科學(xué)學(xué)院,計(jì)算智能團(tuán)隊(duì)

講座內(nèi)容:The asymptotic analysis of so-called completely integrable PDEs is often reducible to the asymptotic analysis of Riemann-Hilbert matrixfactorization problems in the complex plane or a Riemann surface. This is achieved through a deformation method, initiated by Its, and madesystematic and rigorous by Deift and Zhou. Although it is often known as the nonlinear steepest descent method,it is only fairly recently that the term "steepest descent" has been justified, properly speaking steepest descent contours have been constructed, and the method has achieved it full power. In my talk I will illustrate this asymptotic method by considering the case of the semiclassical focusing NLS problem. I will explain how the nonlinear steepest descent method gives rise to a maxi-min variational problem for Green potentials with external field in an infinite sheeted Riemann surface and I will describe results on existence and regularity of solutions to this variational problem. The solutions are the steepest descent contours (S-curves; trajectories of quadratic differentials) together with their equilibrium measures.

鼎尊国际娱乐| 百家乐在线游戏| 竞咪百家乐的玩法技巧和规则| 淘宝博百家乐的玩法技巧和规则| 黄山市| 百家乐走势图解| 7人百家乐官网桌布| 威尼斯人娱乐城会员| 欧凯百家乐官网的玩法技巧和规则| 下载百家乐的玩法技巧和规则| 百家乐官网路珠多少钱| 娱乐城官方网站| 百家乐赔率计算| 爱婴百家乐官网的玩法技巧和规则| 博发百家乐游戏| 澳门百家乐官网怎样下注| 百家乐赌博代理| 澳门百家乐官网常赢打法| 足球开户网| 有百家乐的游戏平台| 电玩城百家乐官网技巧| 信誉博彩网| 大发888真钱游戏玩法| 帝王百家乐新足球平台| 申博百家乐官网有假吗| 盈禾体育| 全讯网.com| 上海百家乐赌博| 百家乐官网专用| 百家乐官网荷官培训| 德州扑克女王| 威尼斯人娱乐城老品牌lm0| 百家乐投注方法| 百家乐虚拟视频| sp全讯网新2| 百家乐陷阱| 澳门百家乐官网怎赌才能赚钱| 吉安县| 博狗开户| 单机棋牌游戏下载| 大发888更名网址6222|